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The positive semidefinite Procrustes (PSDP) problem is the 
following: given rectangular matrices X and B, find the 
symmetric positive semidefinite matrix A that minimizes the 
Frobenius norm of AX − B. No general procedure is known 
that gives an exact solution. In this paper, we present a semi-
analytical approach to solve the PSDP problem. First, we 
characterize a family of positive semidefinite matrices that 
either solve the PSDP problem when the infimum is attained 
or give arbitrary accurate approximations to the infimum 
when it is not attained. This characterization requires the 
unique optimal solution of a smaller PSDP problem where B
is square and X is diagonal with positive diagonal elements. 
Second, we propose a very efficient strategy to solve the 
PSDP problem, combining the semi-analytical approach, a 
new initialization strategy and the fast gradient method. We 
illustrate the effectiveness of the new approach, which is 
guaranteed to converge linearly, compared to state-of-the-art 
methods.
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1. Introduction

Given X, B ∈ Rn,m, the positive semidefinite Procrustes (PSDP) problem is defined 
by

inf
A∈Sn

�
‖AX −B‖2

F , (P)

where ‖ · ‖F is the Frobenius norm of a matrix, Rn,r the set of n × r real matrices with 
the special case Rn = Rn,1, and Sn

� the set of symmetric positive semidefinite matrices 
of size n.

This problem occurs for example in the field of structure analysis [7] and in sig-
nal processing [27]. For an elastic structure, each column of X consists of generalized 
forces while each column of B consists of the corresponding displacements, for a set 
of m-measurements. From this data, it is possible to recover the so-called compliance 
matrix A that relates these column vectors by AX = B and that must be symmetric 
positive definite. Such a compliance matrix may not exist for the available measurements 
and it is therefore desirable to find the matrix A that solves (P) instead [32]. Solutions 
to (P) can also be used when looking for the nearest stable matrix to an unstable one 
using a block-coordinate descent method [11,10]. This is what initially motivated us to 
study this problem.

In the simplest case when X is the identity matrix, the nearest positive semidefinite 
matrix to B in the Frobenius norm is given by (C + H)/2, where H is the symmetric 
polar factor of the matrix C = (B + BT )/2 [15]. Equivalently, the projection P�(B) of 
B onto the cone of semidefinite matrices is given by

P�(B) = U (max (Γ, 0))UT , (1)

where UΓUT is an eigenvalue decomposition of the symmetric matrix B+BT

2 .
The problem of finding the nearest Hermitian positive semidefinite matrix with a 

Toeplitz structure is studied in [27]. If the feasible set in (P) is chosen to be the set of 
orthogonal matrices, then the problem is called the orthogonal Procrustes problem which 
arises in many applications such as computer vision, factor analysis, multidimensional 
scaling, and manifold optimization; see [12,14,26,1] and references therein. On the other 
hand, the symmetric Procrustes problem, where the feasible set in (P) is the set of 
symmetric matrices arise in applications such as determination of space craft altitudes 
and the stiffness matrix of an elastic structure [16,7,21].

In a recent work, Alam and Adhikari [2] have characterized and determined all solu-
tions of the structured Procrustes problem analytically, where the feasible set in (P) is 
either a Jordan algebra or a Lie algebra associated with an appropriate scalar product 
on Rn or Cn.

The theoretical and computational aspects of PSDP problem have been extensively 
studied in the literature. It was first introduced and studied by Allwright [4], and later in 
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detailed by Woodgate [31–33], see also [27,6,20,19,9,22] for more references. A necessary 
and sufficient condition was provided for the existence of a solution for the PSDP problem 
by Allwright and Woodgate in [5]. An expression for the solution of the PSDP problem 
was determined in [22,32] for some special cases. However, we note that no general 
procedure is known for solving (P) analytically. Many algorithmic solutions have been 
proposed in the literature, see for example [4,32,33,6,19]. Other closely related problems 
are the computation of the positive semidefinite least square solutions of the matrix 
equation ATXA = B [17] and the equation AXB = C in variable X [23], and complex 
PSDP problems [18].

Notation. In the following, ‖ · ‖2 denotes the spectral norm of a vector or a matrix. 
For A = AT ∈ Rn,n, we denote A � 0 and A � 0 if A is symmetric positive definite or 
symmetric positive semidefinite, respectively. By σi(X) we denote the ith largest singular 
value of X, and A† denotes the Moore–Penrose pseudoinverse of the matrix A. We use 
the acronym SVD for the singular value decomposition.

1.1. Contributions and outline of the paper

In section 2, we present some preliminary lemmas. In section 3, we derive a semi-
analytical solution to the PSDP problem (P), see Theorem 1. We reduce the original 
problem (P) into a smaller diagonal PSDP problem that always has a unique solution. 
We note that a similar reduction process has been considered in [22, Theorem 2.1]. As 
in [22, Theorem 2.1], Theorem 1 gives a necessary and sufficient condition for the infi-
mum to be attained in (P), and characterizes the family of positive semidefinite matrices 
that attains the infimum assuming the solution for the smaller diagonal PSDP problem 
is known. The contribution of this section is to provide a more comprehensive description 
of the solutions of the PSDP problem:

• In addition to the conclusion of [22, Theorem 2.1], Theorem 1 completely character-
izes the case when the infimum is not attained providing the value of the infimum 
in (P) and deriving a family of arbitrary accurate approximations to the infimum 
in (P).

• Because Theorem 1 characterizes the set of optimal solutions of (P), it can be used 
to obtain explicit formula for solutions to the PSDP problem, or arbitrary close ap-
proximations when the infimum is not attained, with extremal properties of minimal 
rank, minimal Frobenius norm, or minimal spectral norm (Corollary 1).

• When rank(X) = n and (BXT + XBT ) � 0, [32, Theorem 2.5] showed that 
the unique optimal solution in (P) is the zero matrix. When rank(X) < n and 
UT

1 (BXT + XBT )U1 � 0 with U1 ∈ Rn×r an orthogonal basis of the column space 
of X, the infimum is not attained in (P). However, we explicitly provide the value of 
the infimum in (P) without computing the solution for the smaller diagonal PSDP 
problem, and obtain analytically a family of arbitrary close approximations (Theo-
rem 2).
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• In the particular case rank(X) = 1, we give a complete analytic characterization for 
the optimal solutions in (P), see Theorem 3.

In section 4, we describe the fast gradient method (FGM) applied to (P). FGM is 
an optimal first-order method and, in the strongly convex case, is guaranteed to con-
verge linearly with optimal rate among first-order methods. Therefore, combining the 
semi-analytical approach with FGM allows us to guarantee linear convergence of the 
objective function value with rate (1 − 1/κ), where κ = σ1(X)

σr(X) ≥ 1 and r = rank(X). 
Note that Andersson and Elfving [6] had already introduced the reduction of (P) but 
did not use it in their algorithms (also, they did not provide an explicit characterization 
of the solutions of (P) based on the solution of the subproblem, and their first-order 
algorithm is not optimal). Moreover, to deal with ill-conditioned cases effectively (when 
κ is large), we propose a very effective initialization strategy for (P) based on a recursive 
decomposition of the ill-conditioned problem into well-conditioned subproblems. Finally 
in section 5, we present some numerical experiments illustrating the performance of the 
new proposed approach compared to state-of-the-art algorithms.

2. Preliminary results

If X is of full rank, then the existence of a unique solution to the problem (P) is 
guaranteed by [32, Theorem 2.2]. A simplified proof of this fact was presented in [19, 
Theorem 2.4.5] using a theorem of Weierstrass. (“Suppose that the set D is nonempty 
and closed, and that all the sub-level sets of the continuous function f : D → R are 
bounded. Then f has a global minimizer.”) We restate the result here to use it in the 
later sections.

Lemma 1. Let X, B ∈ Rn,m. If X has rank n, then the infimum of (P) is attained for a 
unique A ∈ Sn

�.

Following the strategy used in [2] to derive analytic solutions of the structured Pro-
crustes problem, we reduce the original problem (P) to a smaller problem whose size 
equals the rank of X. The following lemma that gives an equivalent characterization for 
a positive semidefinite matrix will be repeatedly used in doing so.

Lemma 2 ([3]). Let the integer s be such that 0 < s < n, and R = RT ∈ Rn,n be 

partitioned as R =
[
B CT

C D

]
with B ∈ Rs,s, C ∈ Rn−s,s and D ∈ Rn−s,n−s. Then 

R � 0 if and only if

1. B � 0,
2. ker(B) ⊆ ker(C), and
3. D − CB†CT � 0, where B† denotes the Moore–Penrose pseudoinverse of B.
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In the next section we use the fact that the trace of product of two positive semidefinite 
matrices is nonnegative. The following elementary lemma gives more than that.

Lemma 3. Let P, Q ∈ Sn
�. Then all eigenvalues of PQ are nonnegative.

Proof. Let L ∈ Sn
� be such that P = L

1
2L

1
2 . Then PQ = L

1
2 (L 1

2Q) and L
1
2QL

1
2 have the 

same nonzero eigenvalues. Since Q ∈ Sn
�, L 1

2QL
1
2 ∈ Sn

� which implies that all eigenvalues 
of the matrix L

1
2 (L 1

2Q) = PQ are nonnegative. �
We close the section with a result that will be used in obtaining solutions of the PSDP 

problem (P) with the extremum properties of minimal rank, minimal Frobenius norm, 
or minimal spectral norm, and investigate their uniqueness.

Lemma 4. Let the integer s be such that 0 < s < n. Let B ∈ Ss
� and C ∈ Rn−s,s be 

such that ker(B) ⊆ ker(C). Define D := {K ∈ Rn−s,n−s : K −CB†CT � 0} and define 
f : D → Rn,n by

f(K) :=
[
B CT

C K

]
.

Then the matrix K̂ = CB†CT ∈ D is a solution of the minimal rank problem 
minK∈D rank(f(K)), the minimal Frobenius norm problem minK∈D ‖f(K)‖F , and the 
minimal spectral norm problem minK∈D ‖f(K)‖2. Moreover, for the minimal Frobenius 
norm and minimal rank problems, it is the unique solution.

Proof. Let K ∈ D. Using the Schur complement of B in f(K), we have

rank(f(K)) = rank
([

B 0
0 K − CB†CT

])
≥ rank(B).

This implies that

min
K∈D

rank(f(K)) ≥ rank(B),

and the minimum is uniquely attained when K = CB†CT . For the minimal norm prob-
lems, observe that

inf
K∈D

‖f(K)‖G = inf
K−CB†CT�0

∥∥∥∥∥
[
B CT

C K

]∥∥∥∥∥
G

= inf
Δ�0

∥∥∥∥∥
[
B CT

C Δ + CB†CT

]∥∥∥∥∥ , G = F or 2.

G
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For the Frobenius norm, we have

inf
K∈D

‖f(K)‖2
F = inf

Δ�0

∥∥∥∥∥
[
B CT

C Δ + CB†CT

]∥∥∥∥∥
2

F

= ‖B‖2
F + 2‖C‖2

F + inf
Δ�0

‖Δ + CB†CT ‖2
F

= ‖B‖2
F + 2‖C‖2

F + ‖CB†CT ‖2
F ,

where the last equality holds as infΔ�0 ‖Δ + CB†CT ‖F is attained uniquely at Δ = 0
because CB†CT � 0 as B � 0. Similarly, for the 2-norm,

inf
K∈D

‖f(K)‖2 = inf
Δ�0

∥∥∥∥∥
[
B CT

C Δ + CB†CT

]∥∥∥∥∥
2

= inf
Δ�0

∥∥∥∥
[
B CT

C CB†CT

]
︸ ︷︷ ︸

R

+
[

0 0
0 Δ

]
︸ ︷︷ ︸

ΔR

∥∥∥∥
2

= inf
Δ�0

sup
x∈Rn\{0}

x∗(R + ΔR)x
x∗x

≥ sup
x∈Rn\{0}

x∗Rx

x∗x
,

where the last inequality is due to the fact that x∗ΔRx ≥ 0 for all x ∈ Rn as ΔR � 0. 
Therefore the infimum is attained when Δ = 0. �
3. Semi-analytical solutions for the PSDP problem

The aim of this section is to provide comprehensive information about the solution(s) 
of the PSDP problem. As mentioned earlier, we note that some of the results obtained 
here have partly appeared in [22,32] (in particular when the infimum is attained); see 
Section 1.1. Therefore, we will relate the results in this section with those appeared in 
the literature by mentioning the new contribution.

In the following, we present a semi-analytic solution for problem (P). It is semi analytic 
in the sense that we reduce the original problem (P) into a smaller problem that always 
has a unique solution. Then assuming the solution for the subproblem is known, we 
characterize a family of positive semidefinite matrices that either solve the problem (P)
analytically or give arbitrary accurate approximations to the infimum in (P).

Theorem 1. Let X, B ∈ Rn,m, and let r = rank(X). Let also X = UΣV T be a 

singular value decomposition of X, where U =
[
U1 U2

]
∈ Rn,n with U1 ∈ Rn,r, 

V =
[
V1 V2

]
∈ Rm,m with V1 ∈ Rm,r, and Σ =

[
Σ1 0
0 0

]
∈ Rn,m with Σ1 ∈ Rr,r. 

Then

inf
A∈Sn

�
‖AX −B‖2

F = min
A11∈Sr

�
‖A11Σ1 − UT

1 BV1‖
2
F + ‖BV2‖2

F . (2)

Further, let Â11 ∈ Sr
� be such that
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Â11 = argminA11∈Sr
�
‖A11Σ1 − UT

1 BV1‖
2
F . (3)

The following holds.

1. If ker(Â11) ⊆ ker(UT
2 BV1Σ−1

1 ), then Aopt attains the infimum in (2) if and only if

Aopt := U1Â11U
T
1 + U2(UT

2 BV1Σ−1
1 )UT

1 + U1(UT
2 BV1Σ−1

1 )TUT
2 + U2KUT

2 , (4)

where K ∈ Rn−r,n−r is such that K − (UT
2 BV1Σ−1

1 )Â†
11(UT

2 BV1Σ−1
1 )T � 0.

2. Otherwise, the infimum in (2) is not attained. Let rank(Â11) = s < r and let ε > 0

be sufficiently small according to (14). Let Â11 =
[
Û1 Û2

] [ Σ̂1 0
0 0

][
ÛT

1

ÛT
2

]
be a 

singular value decomposition of Â11, where Û1 ∈ Rr,s and Σ̂1 ∈ Rs,s. Define

Âε
11 :=

[
Û1 Û2

] [ Σ̂1 0
0 Υ

][
ÛT

1

ÛT
2

]
, (5)

where Υ ∈ Rr−s,r−s is a diagonal matrix with diagonal entries each equal to εβ , where

β =
{

4
√

(r − s)‖Σ1‖F ‖Â11Σ1 − UT
1 BV1‖F if ‖Â11Σ1 − UT

1 BV1‖F 
= 0,

4
√

(r − s)‖Σ1‖F otherwise.

Define

Aε := U1Â
ε
11U

T
1 + U2(UT

2 BV1Σ−1
1 )UT

1 + U1(UT
2 BV1Σ−1

1 )TUT
2 + U2KεU

T
2 , (6)

where Kε ∈ Rn−r,n−r is such that Kε − (UT
2 BV1Σ−1

1 )(Âε
11)

−1
(UT

2 BV1Σ−1
1 )T � 0. 

Then Aε ∈ Sn
� and

‖AεX −B‖2
F < inf

A∈Sn
�
‖AX −B‖2

F + ε.

Proof. Let A ∈ Rn,n and set

Â := UTAU =
[
A11 AT

21
A21 A22

]
, (7)

where A11 ∈ Rr,r, A21 ∈ Rn−r,r and A22 ∈ Rn−r,n−r, and A � 0 if and only if Â � 0. By 
Lemma 2, Â � 0 if and only if A11 � 0, ker(A11) ⊆ ker(A21) and A22 −A21A

†
11A

T
21 � 0. 

We have

‖AX −B‖2
F
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= ‖UTAUUTX − UTB‖2
F = ‖ÂUTX − UTB‖2

F

=

∥∥∥∥∥
[
A11 AT

21
A21 A22

][
UT

1
UT

2

]
X −

[
UT

1
UT

2

]
B

∥∥∥∥∥
2

F

=

∥∥∥∥∥
[
A11 AT

21
A21 A22

][
UT

1 X

0

]
−

[
UT

1 B

UT
2 B

]∥∥∥∥∥
2

F

= ‖A11U
T
1 X − UT

1 B‖2
F + ‖A21U

T
1 X − UT

2 B‖2
F

=

∥∥∥∥∥A11U
T
1

[
U1 U2

] [Σ1 0
0 0

]
− UT

1 B
[
V1 V2

]∥∥∥∥∥
2

F

+

∥∥∥∥∥A21U
T
1

[
U1 U2

] [Σ1 0
0 0

]
− UT

2 B
[
V1 V2

]∥∥∥∥∥
2

F

=
∥∥∥[A11Σ1 − UT

1 BV1 −UT
1 BV2

]∥∥∥2

F
+
∥∥∥[A21Σ1 − UT

2 BV1 −UT
2 BV2

]∥∥∥2

F

= ‖A11Σ1 − UT
1 BV1‖

2
F + ‖UT

1 BV2‖
2
F + ‖A21Σ1 − UT

2 BV1‖
2
F + ‖UT

2 BV2‖
2
F

= ‖A11Σ1 − UT
1 BV1‖

2
F + ‖A21Σ1 − UT

2 BV1‖
2
F + ‖BV2‖2

F , (8)

where in the last equality we used ‖UT
1 BV2‖

2
F + ‖UT

2 BV2‖
2
F = ‖BV2‖2

F since the Frobe-
nius norm is unitarily invariant. Taking the infimum in (8) over Sn

�, we obtain

inf
A∈Sn

�
‖AX −B‖2

F

= inf
A11�0, ker(A11)⊆ker(A21)

‖A11Σ1 − UT
1 BV1‖

2
F + ‖A21Σ1 − UT

2 BV1‖
2
F + ‖BV2‖2

F .

(9)

Note that the infimum does not depend on the A22 block of matrix Â, see (8), which 
explains why the condition A22 − A21A

†
11A

T
21 � 0 can be removed. Again from (9), we 

have

inf
A∈Sn

�
‖AX −B‖2

F

= inf
A11�0, ker(A11)⊆ker(A21)

‖A11Σ1 − UT
1 BV1‖

2
F + ‖A21Σ1 − UT

2 BV1‖
2
F + ‖BV2‖2

F

≥ inf
A11∈Sr

�
‖A11Σ1 − UT

1 BV1‖
2
F + inf

A21∈Rn−r,r
‖A21Σ1 − UT

2 BV1‖
2
F + ‖BV2‖2

F (10)

= ‖Â11Σ1 − UT
1 BV1‖

2
F + ‖BV2‖2

F , (11)

where the last equality follows by Lemma 1 since (i) the first infimum in the right hand 
side of (10) is attained at a unique Â11 ∈ Sr

� (Lemma 1), and (ii) the value of the 
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second infimum is zero, that is, infA21∈Rn−r,r ‖A21Σ1 − UT
2 BV1‖

2
F = 0, which is attained 

at A21 = UT
2 BV1Σ−1

1 . In order to show that equality in (10) holds instead of inequality, 
we consider two cases.

Case-1: ker(Â11) ⊆ ker(UT
2 BV1Σ−1

1 ). Let A21 = UT
2 BV1Σ−1

1 , A11 = Â11 in (7), and

Aopt := U

[
Â11 (UT

2 BV1Σ−1
1 )T

UT
2 BV1Σ−1

1 K

]
UT , (12)

for some K ∈ Rn−r,n−r such that K − (UT
2 BV1Σ−1

1 )Â†
11(UT

2 BV1Σ−1
1 )T � 0, which upon 

simplification gives (4). By Lemma 2, we have Aopt ∈ Sn
� and, in view of (8), it satisfies

‖AoptX −B‖2
F = ‖Â11Σ1 − UT

1 BV1‖
2
F + ‖BV2‖2

F . (13)

This implies equality in (10) in the case when ker(Â11) ⊆ ker(UT
2 BV1Σ−1

1 ). This com-
pletes the proof of part 1.

Case-2: ker(Â11) � ker(UT
2 BV1Σ−1

1 ). Let

0 < ε <

{
min{1, ‖Â11Σ1 − UT

1 BV1‖
2
F } if ‖Â11Σ1 − UT

1 BV1‖F 
= 0,
1 otherwise,

(14)

and let Âε
11 be as defined in (5). Then we have

‖Âε
11Σ1 − UT

1 BV1‖
2
F

= ‖Â11Σ1 − UT
1 BV1 + Û2ΥÛT

2 Σ1‖
2
F

≤ ‖Â11Σ1 − UT
1 BV1‖

2
F + ‖Υ‖2

F ‖Σ1‖2
F + 2‖Â11Σ1 − UT

1 BV1‖F ‖Υ‖F ‖Σ1‖F

< ‖Â11Σ1 − UT
1 BV1‖

2
F + ε,

where the last inequality follows since ε satisfies (14) and ‖Υ‖F = ε
4‖Σ1‖F ‖Â11Σ1−UT

1 BV1‖F

when ‖Â11Σ1 − UT
1 BV1‖F 
= 0 and ‖Υ‖F = ε

4‖Σ1‖F
otherwise. Thus we have

‖Âε
11Σ1 − UT

1 BV1‖
2
F < ‖Â11Σ1 − UT

1 BV1‖
2
F + ε.‖Âε

11Σ1 − UT
1 BV1‖

2
F

< ‖Â11Σ1 − UT
1 BV1‖

2
F + ε. (15)

Note that Âε
11 is nonsingular. Let A21 = UT

2 BV1Σ−1
1 in (7) and

Aε := U

[
Âε

11 (UT
2 BV1Σ−1

1 )T
UTBV1Σ−1 Kε

]
UT , (16)
2 1
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for some Kε such that Kε − (UT
2 BV1Σ−1

1 )(Âε
11)

−1
(UT

2 BV1Σ−1
1 )T � 0. This yields (6)

after simplifications, and, by construction, Aε ∈ Sn
�. Thus in view of (8) and (15), we 

have

‖AεX −B‖2
F = ‖Âε

11Σ1 − UT
1 BV1‖

2
F + ‖BV2‖2

F

< ‖Â11Σ1 − UT
1 BV1‖

2
F + ‖BV2‖2

F + ε. (17)

As ε tends to zero, from (11) and (17), we get the equality in (10). Hence

inf
A∈Sn

�
‖AX −B‖2

F = ‖Â11Σ1 − UT
1 BV1‖

2
F + ‖BV2‖2

F .

This infimum is attained when ε = 0, however using Lemma 2 we have that Aε /∈ Sn
�

because ker(Â11) � ker(UT
2 BV1Σ−1

1 ). Therefore the fact that

inf
A21∈Rn−r,r

‖A21Σ1 − UT
2 BV1‖

2
F = 0

and the uniqueness of Â11 imply that the infimum is not attained. This completes the 
proof of 2. �
Remark 1. As mentioned in Section 1.1, part of Theorem 1 has partially appeared 
in [22, Theorem 2.1] under a differently stated necessary and sufficient condition, namely, 
rank(Â11) = rank([Â11 | Σ−1

1 V T
1 BTU2]). However, our proof is different and constructive.

Remark 2. In view of Theorem 1, a necessary and sufficient condition for the infimum to 
be attained in (P) is that ker(Â11) ⊆ ker(UT

2 BV1Σ−1
1 ). This condition coincides with the 

result [32, Theorem 2.2]. Therefore apart from the characterization of the solutions for 
the PSDP problem, Theorem 1 also gives a completely different and relatively simpler 
proof for ker(Â11) ⊆ ker(UT

2 BV1Σ−1
1 ) to be a necessary and sufficient condition for the 

attainment of the infimum in (P) than the one provided in [32, Theorem 2.2].
Note that when rank(X) = n, U2 is an n-by-0 empty matrix hence ker(UT

2 BV1Σ−1
1 )

is the full space so that the condition ker(Â11) ⊆ ker(UT
2 BV1Σ−1

1 ) for the infimum to be 
attained is always met. Note also that when Â11 � 0 we have ker(Â11) = {0} hence the 
condition ker(Â11) ⊆ ker(UT

2 BV1Σ−1
1 ) is always met.

Using Lemma 4 in (12) and in (16) for matrices Aopt and Aε, we can characterize the 
solutions of (P) with extremal properties of minimal rank, minimal Frobenius norm or 
minimal spectral norm.

Corollary 1. Let X, B ∈ Rn,m, and let r = rank(X). Let also U1, U2, V1, V2, Σ1 and Â11
be as in Theorem 1, and Z := UT

2 BV1Σ−1
1 .
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1. If ker(Â11) ⊆ ker(UT
2 BV1Σ−1

1 ), then Aopt in (4) with K = ZÂ†
11Z

T is the unique 
solution of the problem (2) with minimal rank, minimal Frobenius norm and minimal 
spectral norm, that is,

argmin
A=argminA∈Sn

�
‖AX−B‖F

‖A‖F,2 = Aopt = argmin
A=argminA∈Sn

�
‖AX−B‖F

rank(A).

2. Otherwise, for sufficiently small ε > 0 according to (14), the matrix Aε in (6) with 

Kε = Z(Âε
11)

−1
ZT is the unique matrix in Sn

� with minimal rank, minimal Frobenius 
norm and minimal spectral norm, such that

‖AεX −B‖2
F < inf

A∈Sn
�
‖AX −B‖2

F + ε.

In the following theorem, we show that if UT
1 (BXT + XBT )U1 � 0 (with U1 defined as 

in Theorem 1) then computing the exact value of the infimum in (P) does not require 
the solution Â11 of the subproblem (3) as in Theorem 1. This complements the result 
in [32, Theorem 2.5] where the zero matrix is shown to be the unique solution of (P)
when rank(X) = n and (BXT + XBT ) � 0.

Theorem 2. Let X, B ∈ Rn,m, and let r = rank(X) < n. Let also U1, U2, V1, V2 and Σ1
be as defined in Theorem 1. If UT

1 (BXT + XBT )U1 � 0, then

inf
A∈Sn

�
‖AX −B‖2

F = ‖UT
1 BV1‖

2
F + ‖BV2‖2

F , (18)

and it is not attained for any A ∈ Sn
�. In this case, let ε > 0 be sufficiently small 

and let Aε
11 ∈ Rr,r be a diagonal matrix with diagonal entries each equal to ε

α , where 
α = 4

√
n‖Σ1‖F ‖UT

1 BV1‖F . Define

Aε := U1A
ε
11U

T
1 + U2(UT

2 BV1Σ−1
1 )UT

1 + U1(UT
2 BV1Σ−1

1 )TUT
2 + U2KεU

T
2 , (19)

where Kε ∈ Rn−r,n−r is such that Kε − (UT
2 BV1Σ−1

1 )(Aε
11)

−1(UT
2 BV1Σ−1

1 )T � 0. Then 
Aε ∈ Sn

� and

‖AεX −B‖2
F < inf

A∈Sn
�
‖AX −B‖2

F + ε. (20)

Proof. We only give a proof of (18) and skip the proof of (20) as it is similar to the proof 
of the point 2 in Theorem 1. In Theorem 1 we proved that

inf
A∈Sn

�
‖AX −B‖2

F = min
A11∈Sr

�
‖A11Σ1 − UT

1 BV1‖
2
F + ‖BV2‖2

F . (21)

Observe that for any A11 ∈ Sr
�, we have
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‖A11Σ1 − UT
1 BV1‖

2
F

= trace
(
(A11Σ1 − UT

1 BV1)T (A11Σ1 − UT
1 BV1)

)
= ‖A11Σ1‖2

F + ‖UT
1 BV1‖

2
F − trace

(
UT

1 BV1Σ1A11 + Σ1V
T
1 BTU1A11

)
= ‖A11Σ1‖2

F + ‖UT
1 BV1‖

2
F − trace

(
UT

1 (BXT + XBT )U1A11
)

≥ ‖UT
1 BV1‖

2
F , (22)

where the third equality follows by using the compact SVD of X, that is, X = U1Σ1V
T
1 . 

The last inequality in (22) follows by using Lemma 3 since

trace
(
UT

1 (BXT + XBT )U1A11
)
≤ 0

as −UT
1 (BXT + BXT )U1 � 0 and A11 � 0. Therefore from (22), we obtain

min
A11∈Sr

�
‖A11Σ1 − UT

1 BV1‖
2
F ≥ ‖UT

1 BV1‖
2
F ,

and equality holds when A11 = 0. Plugging this in (21), we obtain

inf
A∈Sn

�
‖AX −B‖2

F = ‖UT
1 BV1‖

2
F + ‖BV2‖2

F . (23)

Using the arguments similar to that of Case-2 in Theorem 1, it follows that the infimum 
in (23) is not attained and for a sufficiently small ε > 0, Aε in (19) satisfies (20). �
Remark 3. Theorem 1 reduces the original problem (P) to a PSDP problem with a 
diagonal r-by-r matrix X, with r = rank(X), of the form

min
Ã�0

‖ÃΣ − B̃‖2
F , (24)

where Σ ∈ Sr
� is a diagonal matrix with positive diagonal entries, for which a unique 

solution is guaranteed by Lemma 1. In some special cases, when B̃TΣ + ΣT B̃ � 0 [22], 
or when −B̃ΣT − ΣB̃T � 0 [32], the optimal solution in (24) can be explicitly given. 
However, in general finding an analytic solution to the subproblem is a challenging task 
and still an open problem. We will discuss in Section 4.1 the use of an optimal first-order 
method to solve this problem.

3.1. Computational cost of the semi-analytical approach

In view of Theorem 1, we have that the semi-analytical approach completes in three 
steps. The first step takes O(max(m, n) min(m, n)2) floating point operations to compute 
the singular value decomposition of X [29]. The second step is to compute the solution 
Â11 of the subproblem (3), and cost of this depends on the method used to solve it (see 
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Section 4.1). The third step is to form Aopt. This involves matrix-matrix multiplication 
and costs O(n2r).

3.2. Analytical solution for rank(X) = 1

We note that the case rank(X) = 1 differs from the case rank(X) > 1 because in that 
case the subproblem (3) has a closed-form solution

Â11 = max
(
0, UT

1 BV1Σ−1
1

)
∈ R

when UT
1 BV1 ≥ 0, and the infimum is not attained otherwise. Therefore, we can provide a 

complete analytical characterization of the set of optimal solution of (P) in this particular 
case. Although this follows directly from Theorem 1 and the observation above, we state 
the result with its proof here in the case rank(X) = 1 for the sake of future reference.

The rank-one case is also important in solving the particular case when X and B are 
vectors, that is, when one is looking for A � 0 such that ‖Ax − b‖2 is minimized where 
x and b are vectors.

Theorem 3. Let X, B ∈ Rn,m be such that rank(X) = 1. Let X = UΣV T be a singular 
value decomposition of X, where U = [u U1] ∈ Rn,n with u ∈ Rn, V = [v V1] ∈ Rm,m

with v ∈ Rm, and Σ =
[
σ 0
0 0

]
∈ Rn,m with σ > 0. Then the following hold.

1. If uTBv > 0, then

inf
A∈Sn

�
‖AX −B‖F = ‖BV1‖F ,

and Aopt attains the infimum if and only if

Aopt = σ−1 ((uTBv)uuT + U1U
T
1 BvuT + uvTBTU1U

T
1
)

+ U1KUT
1 , (25)

for some matrix K such that K − 1
σuTBv

UT
1 (Bv)(Bv)TU1 � 0. In particular, Aopt

can be chosen to be of rank one by choosing K = 1
σuTBv

UT
1 (Bv)(Bv)TU1.

2. If uTBv ≤ 0, then

inf
A∈Sn

�
‖AX −B‖2

F = ‖uTBv‖2
F + ‖BV1‖2

F . (26)

Further, if UT
1 Bv = 0, then the infimum in (26) is attained by a matrix Aopt of the 

form (25). If UT
1 Bv 
= 0, then the infimum in (26) is not attained. In the later case 

for any arbitrary small ε > 0, choose n0 ∈ N such that σ
2

n2
0
− 2σ uTBv

n0
< ε and define

An0 = σ−1
(

1
uuT + U1U

T
1 BvuT + uvTBTU1U

T
1

)
+ U1Kn0U

T
1 ,
n0
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for some Kn0 with Kn0 − n0
σ2U

T
1 (Bv)(Bv)TU1 � 0. Then An0 � 0 and

‖An0X −B‖2
F < inf

A�0
‖AX −B‖2

F + ε.

Moreover, An0 can be chosen to be of rank one by choosing

Kn0 = n0

σ2U
T
1 (Bv)(Bv)TU1.

Proof. Let A ∈ Rn,n and set

Â = UTAU =
[
a11 aT2
a2 A11

]
, (27)

where a11 ∈ R, a2 ∈ Rn−1 and A11 ∈ Rn−1,n−1. Then following the lines of proof of 
Theorem 1 we get the following counterpart of (9),

inf
A∈Sn

�
‖AX −B‖2

F = inf
a11≥0, ker(a11)⊆ker(a2)

|a11σ − uTBv|2 + ‖a2σ − UT
1 Bv‖2

F + ‖BV1‖2
F .

(28)

Again, there are two possibilities for the value of infimum in (28).
Case-1: When uTBv > 0. In this case it is easy to see that the infimum in (28) is 

attained when a11 = σ−1uTBv and a2 = σ−1UT
1 Bv.

Case-2: When uTBv ≤ 0. In this case define

f(a11, a2) := |a11σ − uTBv|2 + ‖a2σ − UT
1 Bv‖2

F + ‖BV1‖2
F .

Observe that if a11 = 0, then the semidefiniteness of A in the form (27) implies that 
a2 = 0. If a11 > 0, then the condition ker(a11) ⊆ ker(a2) is redundant in (28), and for 
any fixed a11 > 0 the infimum of f over a2 is attained by σ−1UT

1 Bv. In view of this, we 
obtain

inf
A∈Sn

�
‖AX −B‖2

F = inf
a11≥0, ker(a11)⊆ker(a2)

f(a11, a2)

= min
{

inf
a11>0

f(a11, σ
−1UT

1 Bv), f(0, 0)
}

= inf
a11>0

f(a11, σ
−1UT

1 Bv)

= f(0, σ−1UT
1 Bv)

= ‖uTBv‖2
F + ‖BV1‖2

F ,

where the fourth equality is due to the fact that f is a strictly increasing function in a11. 
Thus the infimum is attained if and only if a11 = 0 and a2 = σ−1UT

1 Bv, but then the 
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semidefiniteness of A implies that a2 = UT
1 Bv = 0 as σ > 0. Now substituting the values 

of a11 and a2 in (27), and following the lines of the proof of Case-1 in Theorem 1 we 
obtain the family of matrices Aopt that attains the infimum in (28).

Next suppose that UT
1 Bv 
= 0, and let ε > 0 be arbitrary small. Then choose n0 ∈ N

such that σ
2

n2
0
− 2σ uTBv

n0
< ε, and define

An0 = U

[
1
n0

σ−1(UT
1 Bv)T

σ−1UT
1 Bv Kn0

]
UT , (29)

for some Kn0 such that Kn0 − n0
σ2U

T
1 (Bv)(Bv)TU1 � 0. This implies that An0 � 0. Thus 

from (28) and (29), we get

‖An0X −B‖2
F − inf

A∈Sn
�
‖AX −B‖2

F = f( 1
n0

, σ−1UT
1 Bv) − f(0, σ−1UT

1 Bv)

= σ2

n2
0
− 2σu

TBv

n0
< ε. (30)

Again by choosing Kn0 = n0
σ2U

T
1 (Bv)(Bv)TU1 and using the Schur complement of 1

n0
in 

UTAn0U , we have that An0 is of rank one and satisfies (30). �
4. An algorithmic solution to the PSDP problem

In this section, we first describe the fast gradient method to solve (P) (Section 4.1). 
We then propose a new very efficient initialization strategy for (P) when X is diagonal 
and ill-conditioned (Section 4.2). Finally, we explain the advantages of combining the 
semi-analytical approach, FGM and our new initialization strategy. In particular, this 
allows us to guarantee linear convergence for solving (P) (Section 4.3).

4.1. Fast Gradient Method

In order to be able to solve large-scale problem (P), say for n up to a 1000, it makes 
sense to use first-order methods. In this section, we describe the fast gradient method 
(FGM) applied to (P); see Algorithm FGM. We choose FGM because it is simple to 
implement and it is an optimal first-order method for smooth convex optimization, that 
is, no first-order method can have a faster convergence rate. In fact, FGM is guaranteed 
to decrease the objective function value at sublinear rate O(1/t2) where t is the iteration 
number. Moreover, in the strongly convex case, when κ = σ1(X)

σn(X) > 0, the decrease is 
guaranteed to be at linear rate O((1 − 1/κ)t). This is much faster than the standard 
gradient descent method, with respective rate of O(1/t) and O((1 − 1/κ2)t). We refer 
the reader to [24,25] for more details on FGM.

The computational cost of FGM is O(n3 + n2m) operations per iteration. The most 
expensive steps are
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Algorithm FGM Fast Gradient Method for (P) [25, p.90].
Require: An initial guess A ∈ Sn

�, number of iterations T (other stopping criteria can be used).
Ensure: An approximate solution A ≈ argminÃ�0 ‖ÃX − B‖F .

1: L = σ2
1(X), q = σ2

n
(X)
L .

2: α1 ∈ (0, 1); Y = A.
3: for k = 1: T do
4: Â = A. % Keep the previous iterate in memory.
5: GY = Y XXT − BXT . % Compute the gradient, XXT and BXT can be pre-computed.
6: A = P�0

(
Y − 1

LGY

)
. % Projected gradient step.

7: αk+1 = 1
2

(
q − α2

k +
√

(q − α2
k)2 + 4α2

k

)
, βk = αk(1−αk)

α2
k
+αk+1

.

8: Y = A + βk

(
A − Â

)
. % Linear combination of the current and previous iterates.

9: end for

• the computation of the singular values of X (step 1) requiring O(min(m, n)2 max(m,

n)) operations [29].
• the computation of the gradient in O(mn2 + n3) operations (step 5). Note that the 

n-by-n matrices XXT and BXT should be computed only once in which case the 
remaining computational cost for the gradient computation per iteration is O(n3).

• The projection step in O(n3) operations (step 6), as it requires the eigenvalue de-
composition of a symmetric n-by-n matrix; see (1).

Denoting T the total number of iterations (typically, T ≥ 100), the total computational 
cost of FGM is O(Tn3 + mn2). In most cases, Tn ≥ m hence the computational cost of 
FGM will be O(Tn3).

4.2. Initialization

In this section, we present three initialization strategies.

4.2.1. Projection of the optimal unconstrained solution
In [6], the authors propose to use as an initialization the projection of the optimal 

solution of the unconstrained problem, that is,

P�

(
argmin
A∈Rn×n

‖AX −B‖F
)
.

This initialization can sometimes perform well. However, it comes with no guarantee 
and provides very bad initialization in several situations, in particular for ill-conditioned 
problems; see Section 4.2.4 below for some examples.

4.2.2. Diagonal matrix
It is rather straightforward to compute the optimal solution of (P) assuming that 

the matrix A is diagonal. In fact, the problem reduces to n independent least squares 
problem in one variables with a nonnegativity constraint. We have
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‖diag(a)X −B‖2
F =

n∑
i=1

‖aiX(i, :) −B(i, :)‖2
F ,

where diag(a) is a diagonal matrix whose diagonal elements are given by a =
[a1, a2, . . . , an]T ∈ Rn. The optimal solution for each subproblem is given by

a∗i = argmin
ai≥0

‖aiX(i, :) −B(i, :)‖2
F = max

(
0, B(i, :)X(i, :)T

‖X(i, :)‖2
2

)
, i = 1, 2, . . . n.

4.2.3. Recursive decomposition for ill-conditioned and diagonal X
As we have explained previously, the convergence of first-order algorithms for (P) will 

depend on the conditioning of X. Using the semi-analytical approach from Section 3, 
(P) can be reduced to a problem where X is diagonal with positive diagonal elements. If 
X is well-conditioned, then FGM will converge fast and the initialization strategy does 
not play a crucial role. However, when X is ill-conditioned, FGM will be more sensitive 
to initialization as it converges slower.

Let us generalize the idea from the previous section by assuming that A is block 
diagonal instead of diagonal. For simplicity, let us assume that the diagonal matrix X is 
partitioned into two blocks X1 and X2 (this generalizes easily to more than two blocks):

min
A1�0,A2�0

∥∥∥∥∥
(
A1 0
0 A2

)(
X1 0
0 X2

)
−
(

B1 B12
B21 B2

)∥∥∥∥∥
F

.

This problem can be decoupled into two independent subproblems: for i = 1, 2,

min
Ai�0

‖AiXi −Bi‖F .

Let us denote κ(Xi) the condition number of Xi. If X1 and X2 are well conditioned, that 
is, maxi κ(Xi) is small, good approximate solutions to these subproblems can be obtained 
much faster than for the ill-conditioned X. Moreover, since X is diagonal, partitioning 
X into two blocks in order to minimize maxi κ(Xi) can be done as follows:

1. Sort the diagonal entries of X such that x1 ≤ x2 ≤ · · · ≤ xn (in our reduction, the 
diagonal entries of X are already sorted in nonincreasing order, since we use the 
standard SVD). This can be done in O(n log(n)) operations.

2. Pick the partition [1, 2, . . . , k] ∪ [k + 1, k + 2, . . . , n] such that max
(

xk

x1
, xn

xk+1

)
is 

minimized. This can be done in O(n) operations.

Finally, it is straightforward to use this idea recursively as follows: As long as a block Xi is 
not well-conditioned, that is, κ(Xi) > κM for some parameter κM (we use κM = 100), the 
block Xi is partitioned into two blocks as explained above. Once X has been partitioned 
into well-conditioned subblocks, we combine the diagonal initialization along with 100 
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Table 1
Average initial error ‖AX − B‖F and standard deviation (in brackets) obtained by the different initialization 
approaches.

Zero Unconstrained Diagonal Recursive
Gaussian 36.97 (0.81) 8764.30 (1673.09) 36.73 (0.81) 33.72 (0.78)
Uniform 21.37 (0.27) 5799.61 (726.11) 21.08 (0.26) 17.45 (0.29)

iterations of FGM to approximately solve the (well-conditioned) subproblems. As we will 
see, not only this initialization will provide a solution with low initial error, it will also 
allow the FGM to converge faster to the optimal solution.

Note that this initialization is only applicable when X is diagonal hence can be used 
only in combination with the semi-analytical reduction described in Section 3.

4.2.4. Preliminary numerical experiments
Let us compare the different initialization strategies in ill-conditioned cases (well-

conditioned cases are not so interesting since most algorithms will converge fast, being 
less sensitive to initialization), and let us consider

X = diag(1, 2, . . . , 10, 20, . . . 100, 200 . . . , 1000, 2000, . . . , 10000), with κ(X) = 104.

Recall that the optimal solution of (P) will be unique in this case since X has rank 
n = 37 (Lemma 1). We generate B in two different ways:

• Gaussian. Each entry is randomly generated following a normal distribution with 
mean 0 and standard deviation 1 (randn(n) in Matlab).

• Uniform. Each entry is randomly generated following a uniform distribution in the 
interval [0,1] (rand(n) in Matlab).

In each case, we generate 100 such matrices. We will compare four initializations:

• Zero. This is the trivial initialization A = 0.
• Unconstrained. This is the projection onto Sn

� of the optimal solution of the uncon-
strained version of (P); see Section 4.2.1.

• Diagonal. This is the optimal diagonal solution of (P); see Section 4.2.2.
• Recursive. This is the recursive decomposition approach described in Section 4.2.3.

We will only compare the initializations combined with Algorithm FGM because, as 
we will see in Section 5, it consistently performs well. Table 1 gives the average initial 
error for the four initialization strategies, along with the standard deviation, for the 
100 randomly generated matrices B of the two types. The best result is highlighted in 
bold. Fig. 1 displays the evolution of the error (average over 100 runs) for the different 
initializations using FGM.
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Fig. 1. Evolution of the average error ‖AX −B‖F over 100 randomly generated matrices B for the different 
initializations using FGM: Gaussian (left) and Uniform (right).

We observe the following

• The initialization based on the projection of the optimal solution of the unconstrained 
problem performs very badly. In fact, the error is significantly larger than with the 
trivial zero initialization.

• The diagonal initialization performs slightly better than the zero initialization.
• Our recursive initialization performs best, both in term of initial error and for en-

abling FGM to converge faster to the unique optimal solution of (P).

4.3. Combination of the semi-analytical approach, the recursive initialization and FGM

Combining the semi-analytical approach, the recursive initialization and FGM al-
low us to obtain an efficient algorithm for (P). The semi-analytical approach reduces 
the problem (P) to a problem (i) involving only (possibly smaller) square matrices 
(where m = n = rank(X)) and (ii) that is strongly convex (since the ‘new’ X, de-
noted Σ1 in our derivations, is diagonal with positive diagonal elements). This requires 
O(min(m, n)2 max(m, n) + n2r) operations; see Section 3.1.

The first advantage (i) of the semi-analytical approach is that it significantly reduces 
the computational cost of FGM when rank(X) � n (for example when m � n). The 
second advantage (ii) guarantees FGM to decrease the objective function value at linear 
rate (1 −1/κr) where κr = σ1(X)

σr(X) and r = rank(X). This is, to the best of our knowledge, 
the first time an algorithm is proposed for (P) with guaranteed linear convergence. 
If X is ill-conditioned, that is, κr is large, the convergence could be slow. However, 
this is mitigated by our recursive decomposition strategy that solves well-conditioned 
subproblems to initialize the ill-conditioned one.

5. Numerical experiments

In this section, we compare the following algorithms:
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• Gradient. The projected gradient method applied on (P) – this is FGM using βk = 0
at each step (that is, A = Y in Algorithm FGM). This method will serve as a 
baseline.

• FGM. The fast projected gradient method applied on (P); see Algorithm FGM.
• ParTan. This is the method proposed in [6] and referred to as ‘Parallel tangents’. This 

algorithm is rather similar to FGM but does not guarantee the optimal convergence 
rate. It can be seen as a heuristic variant of FGM where βk is chosen as to minimize 
‖Y X − B‖F without the PSD constraint, where Y = A + βkÂ with A the current 
iterate and Â the previous iterate; see Algorithm FGM. If this step does not decrease 
the objective function, then βk = 0 is chosen (that is, a standard gradient step is 
used). Note that the computation of the β′

ks makes ParTan computationally slightly 
more expensive than FGM and Gradient.

• AN-FGM. This is the combination of the semi-analytical approach, reducing the 
problem to the case where X is diagonal with positive diagonal elements, and then 
using FGM on this reduced problem. We use the recursive initialization described in 
Section 4.2.3.

Note that we could combine the analytical approach and the recursive initialization with 
any other method. We choose FGM because it guarantees linear convergence, although it 
performs similarly as ParTan (see the numerical experiments below). For the first three 
algorithms, we use the diagonal initialization.

In these numerical experiments, we try as much as possible to cover all the different 
scenarios: we test for m = n, m < n = 2m and n < m = 2n. In all cases, the matrix 
B is generated in the same way: each entry is randomly generated following a normal 
distribution with mean 0 and standard deviation 1 (randn(m,n) in Matlab). For the 
matrix X, we consider three cases

1. Well-conditioned. Each entry is randomly generated following a normal distribution 
with mean 0 and standard deviation 1 (randn(m,n) in Matlab).

2. Ill-conditioned. Let (U, Σ, V ) be the compact SVD of a matrix generated as in the 
well-conditioned case. Then we generate X = UΛV where Λ is a diagonal matrix 
such that Λ(i, i) = αi−1 and αmin(m,n)−1 = 106 = κ(X).

3. Rank deficient. We perform the SVD (U, Σ, V ) of a matrix generated as in the well-
conditioned case, set the r = min(m, n)/2 smallest singular values of Σ to zero to 
obtain Σ′, and then compute X = UΣ′V T so that rank(X) = min(m, n)/2.

The Matlab code is available from https://sites.google.com/site/nicolasgillis/. All 
tests are preformed using Matlab on a laptop Intel CORE i5-3210M CPU @2.5GHz 
2.5GHz 6Go RAM.

For each experiment, we generate 10 such matrices and display the average results. 
For each algorithm, we perform 1000 iterations.

https://sites.google.com/site/nicolasgillis/
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Fig. 2. Evolution of the average relative error 100 ‖AX−B‖F

‖B‖F
for the different algorithms.

Fig. 2 displays the evolution of the relative error in percent, that is,

relative error (%) = 100‖AX −B‖F
‖B‖F

,

for each algorithm in each of the nine cases described above. Table 2 reports the com-
putational time required by each algorithm to perform the 1000 iterations. In bold we 
indicate the cases when AN-FGM is significantly faster than the other approaches, be-
cause of the dimension reduction of the problem.

We observe the following:

• In terms of computational time, AN-FGM will be faster when rank(X) � n since, 
after the preprocessing performed by our semi-analytical approach, the number of 
operations per iteration of AN-FGM is O(r3) where r = rank(X) ≤ n. This happens 
when X is rank-deficient, and when m = n/2 – these are the bold results in Table 2. 
In all other cases, all algorithms have roughly the same computational cost, namely 
O(Tn3) where T is the number of iterations (here T = 1000); see the discussion in 
Section 4.1.
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Table 2
Computational times for the different algorithms to perform 1000 iterations.

Gradient FGM ParTan AN-FGM
Well-conditioned m = n = 100 6.71 6.57 8.16 7.01

m = 2n = 100 1.48 1.49 2.13 1.52
n = 2m = 100 5.58 5.59 6.31 1.45

Ill-conditioned m = n = 100 5.87 5.67 7.49 5.64
m = 2n = 100 1.37 1.32 2.00 1.33
n = 2m = 100 5.49 5.20 6.75 1.28

Rank-deficient m = n = 100 6.22 6.56 7.27 1.58
m = 2n = 100 1.67 1.42 2.22 0.34
n = 2m = 100 5.33 5.33 6.55 0.36

• In all cases, the gradient method performs the worse. This is not surprising since 
it only uses the gradient information of the current iterate as opposed to FGM and 
ParTan.

• For well-conditioned X:
For m = n = 100, FGM, ParTan and AN-FGM perform similarly. The reason is 
that the semi-analytical approach cannot reduce the problem. The slight advantage 
of AN-FGM compared to FGM and ParTan comes from the fact the recursive ini-
tialization already computes 100 iterations of FGM.
For n = 50 < m = 100, all algorithms converge very fast, within 100 iterations: 
the reason is that the condition number of X is much smaller than in the case 
n = m = 100 (the average condition number of a 50-by-100 Gaussian matrix is 
below 10, while for a 100-by-100 Gaussian matrix it is above 1000).
For n = 100 > m = 50, AN-FGM performs best because it reduces the dimension of 
the problem from 100 to 50 (hence also reducing the computational cost per iteration; 
see Table 2).

• For ill-conditioned X, AN-FGM outperforms the other approaches, especially for 
n = 2m = 100 (for the same reasons as in the well-conditioned case). For m = n =
100 and n = 50 < m = 100, the better performance of AN-FGM is explained by the 
recursive initialization; see Section 4.2.4. FGM and ParTan perform similarly, with 
a slight advantage for FGM.

• For rank-deficient X, it is easy to analyze: AN-FGM outperforms the other ap-
proaches because it reduces the problem size (from an n-by-n variable problem to an 
r-by-r where r � n) and the reduced problem is well-conditioned (since the non-zero 
singular values of X come from a randomly generated matrix). It is interesting and 
surprising to note that ParTan performs better than FGM in this case.1 However, 
we prefer not to use ParTan because it is a heuristic to combine several iterates and 

1 Although we observed that by tuning the parameter α0 (namely, using 0.9 instead of 0.1) makes FGM 
perform slightly better than ParTan in these rank-deficient cases. It could be an interesting direction for 
research to tune this parameter automatically.
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comes with no guarantee (authors only prove that there is at least one subsequence 
of the iterates converging to the optimal solution [6, Lemma 4.1]).

Summary. In all cases, the gradient method performs significantly worse than the other 
first-order methods. When r = rank(X) � n or X is ill-conditioned, AN-FGM outper-
forms FGM and ParTan. In fact, when r = rank(X) � n, each iteration of AN-FGM 
is in O(r3) operations instead of O(n3), and, when X is ill-conditioned, AN-FGM takes 
advantage of an effective initialization strategy. In the other cases (that is, rank(X) ≈ n

and X is well-conditioned), AN-FGM, FGM and ParTan perform similarly.

Remark 4. For all generated matrices in the rank-deficient cases and the cases n = 2m, 
we have rank(X) < n implying that the infimum of (P) is not necessarily attained; see 
Lemma 1. In fact, we have observed that the infimum is never attained. Although we do 
not have a rigorous explanation for this fact, we believe that for random matrices X and 
B with rank(X) < n, it is very unlikely that the condition ker(Â11) ⊆ ker(UT

2 BV1Σ−1
1 )

for the infimum to be attained is met. Recall that the matrix Â11 is the solution of the 
PSD Procrustes subproblem (3), and U2, V1 and Σ−1

1 are factors in the SVD of X; see 
Theorem 1. We believe these conditions are not likely to be met when n is large because

• The solution Â11 of the subproblem (3) is in general not positive definite. Take for 
example the simple case Σ1 = I for which Â11 is the projection of (C+CT )/2 on the 
cone of PSD matrices where C = UT

1 BV1. Since U1 and V1 come from the SVD of 
X which is randomly generated, and B is randomly generated, the entries of C also 
follows a Gaussian-like distribution (for which the probability for an eigenvalue to 
be positive is 1/2). Therefore, it is not likely for (C + CT )/2 to be positive definite 
hence its projection is in most cases rank deficient; see (1).

• The kernel condition is not likely to be satisfied: the probability for one subspace 
to contain another subspace generated randomly is zero (of course, in our case the 
subspaces are not independent so a rigorous probabilistic analysis is non trivial).

5.1. Comparison with a second-order method

In this section, we compare AN-FGM with the interior point method SDPT3 (ver-
sion 4.0) [28,30], where we used CVX as a modeling system [8,13]. This is a second-order 
method hence it is computationally more expensive but guarantees quadratic conver-
gence. We perform in this section exactly the same experiment as in the previous section 
except that we use matrices of smaller size (for the sizes of the previous section, SDPT3 
needs more than one minute to terminate). In order to have a fair comparison, we first 
run SDPT3 on (P) and then run AN-FGM allowing the same computational time as 
for SDPT3. Table 3 gives the relative error in percent for the different types of matrices 
for SDPT3 (fourth column) and AN-FGM (third column) within the same computa-
tional time (fifth column). The last column indicates the time for AN-FGM to obtain a 
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Table 3
Comparison between AN-FGM and SDPT3.

AN-FGM SDPT3 Time (s.) AN-FGM – 0.01% (s.)
Well-conditioned m = n = 60 83.77 83.77 10.75 0.36

m = 2n = 60 93.06 93.06 2.26 0.01
n = 2m = 60 60.85 60.86 21.38 0.02

Ill-conditioned m = n = 60 78.09 76.19 16.91 /
m = 2n = 60 89.44 88.70 2.97 /
n = 2m = 60 54.08 54.36 25.93 10.78

Rank-deficient m = n = 60 82.96 82.97 20.21 0.01
m = 2n = 60 91.85 91.85 2.96 0.00
n = 2m = 60 77.10 77.10 19.60 0.00

solution with error up to 0.01% of the final solution generated by SDPT3 (/ indicates 
that AN-FGM was not able to achieve that accuracy within the allotted time), that is, 
‖Aan-fgmX −B‖F ≤ 1.0001‖Asdpt3X −B‖F where Aan-fgm (resp. Asdpt3) is the solution 
generated by AN-FGM (resp. SDPT3).

We observe the following:

• In all the well-conditioned cases and rank-deficient cases, AN-FGM outperforms 
SDPT3, being order of magnitude faster (comparing the last two columns of Table 3). 
This is not surprising since AN-FGM has a much lower per-iteration cost while the 
convergence will be fast because the problems solved by FGM are well conditioned.

• For ill-conditioned cases, SDPT3 allows to obtain high accuracy solutions faster 
(except in the case n = 2m = 60). However, AN-FGM generates solution at most 
2% from SDPT3 in the worst case.
For n = 2m = 60, AN-FGM performs better because the subproblem solved by FGM 
has size only 30-by-30 hence can perform more iterations. Moreover, the infimum is 
not attained which explains why SDPT3 failed to return a solution with acceptable 
accuracy (cvx_status = Failed in the 10 cases); see also Remark 4.

Summary. Except for ill-conditioned problems of relative small size (m and n up to a 
hundred on our machine) where n is not significantly smaller than m, AN-FGM should 
be preferred to SDPT3. For large problems, SDPT3 quickly becomes impractical (for 
example, SDPT3 requires about 80 seconds for the well-conditioned case with m = n =
100, while Matlab crashed when we tried m = n = 200).

Remark 5. We also performed a comparison with the interior-point method dedicated 
to the PSD Procrustes problem proposed in [19] (namely, sdls_precorr available from 
https://sites.google.com/site/nathankrislock/). However, it performs in general either 
similarly as SDPT3 or worse (in particular, for the ill-conditioned case with n = 2m = 40, 
it returns a solution with relative error higher than 100%). Therefore, we have not 
included sdls_precorr in our comparison.

https://sites.google.com/site/nathankrislock/
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6. Conclusion

In this paper we have first completely described the set of optimal solutions of the 
PSD Procrustes problem (P) when the infimum is attained, and a sequence of solu-
tions whose objective function value converges to the infimum when the infimum is not 
attained. This description relies on the solution of a smaller PSD Procrustes problem 
(where X and B are r-by-r matrices with r = rank(X) and X is diagonal with pos-
itive diagonal elements) whose infimum is always attained. Then, we have applied an 
optimal first-order method (namely, the fast gradient method) on the subproblem that 
is guaranteed to converge linearly with rate (1 − κ−1) where κ = σ1(X)

σr(X) . Moreover, to 
mitigate the slow convergence in ill-conditioned cases, we proposed a new effective re-
cursive initialization scheme based on a hierarchical decomposition of the problem into 
well-conditioned subproblems. Finally, our new method, referred to as AN-FGM, was 
shown to compete favorably with other first-order methods, and with a second-order 
method (namely, SDPT3, a state-of-the-art interior-point method).
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